Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Individuals with physical disabilities are largely underrepresented in the geoscience workforce. In this study, we analyzed over 2,500 job advertisements (ads) for entry-level geoscience positions across 19 industries to assess how inclusive the United States job market is for people with physical disabilities. We evaluated each ad’s Equal Opportunity Employer (EEO) and accommodation statements to create a measure of geoscience employers’ inclusive practices for people with disabilities. We coded each ad for instances where physical abilities (e.g., traversing rough terrain, driving a vehicle, lifting heavy objects) were listed as required or preferred qualifications and whether these abilities matched the core job function. A significant proportion of job ads (44%) did not include EEO statements, and of those that did, the language used was minimal or abbreviated. Additionally, only 18% of ads mentioned accommodations for people with disabilities. Of the ads that required physical abilities, only 19% requested physical abilities that matched the core job function. Students exploring their career options or applying for entry-level jobs may feel disadvantaged, restrict their applications, or dismiss geoscience careers if they have physical limitations, or if they perceive that the work environment is not inclusive. Overall, online geoscience ads could benefit from adding or modifying equal opportunity employment and accommodations statements to reflect a more inclusive workplace and could explicitly link requested physical abilities to the job description. These results could help employers consider possible modifications to their job advertisements and explore alternative strategies to promote a more inclusive geoscience workforce.more » « lessFree, publicly-accessible full text available December 31, 2025
-
Free, publicly-accessible full text available September 1, 2026
-
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue ‘Sculpting the microbiome: how host factors determine and respond to microbial colonization’.more » « less
-
We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range.more » « less
-
The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024more » « less
An official website of the United States government
